3.513 \(\int \sqrt{3+4 \cos (c+d x)} \sec (c+d x) \, dx\)

Optimal. Leaf size=48 \[ \frac{8 F\left (\frac{1}{2} (c+d x)|\frac{8}{7}\right )}{\sqrt{7} d}+\frac{6 \Pi \left (2;\frac{1}{2} (c+d x)|\frac{8}{7}\right )}{\sqrt{7} d} \]

[Out]

(8*EllipticF[(c + d*x)/2, 8/7])/(Sqrt[7]*d) + (6*EllipticPi[2, (c + d*x)/2, 8/7])/(Sqrt[7]*d)

________________________________________________________________________________________

Rubi [A]  time = 0.0870154, antiderivative size = 48, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.143, Rules used = {2803, 2661, 2805} \[ \frac{8 F\left (\frac{1}{2} (c+d x)|\frac{8}{7}\right )}{\sqrt{7} d}+\frac{6 \Pi \left (2;\frac{1}{2} (c+d x)|\frac{8}{7}\right )}{\sqrt{7} d} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[3 + 4*Cos[c + d*x]]*Sec[c + d*x],x]

[Out]

(8*EllipticF[(c + d*x)/2, 8/7])/(Sqrt[7]*d) + (6*EllipticPi[2, (c + d*x)/2, 8/7])/(Sqrt[7]*d)

Rule 2803

Int[Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]/((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[d/b
, Int[1/Sqrt[c + d*Sin[e + f*x]], x], x] + Dist[(b*c - a*d)/b, Int[1/((a + b*Sin[e + f*x])*Sqrt[c + d*Sin[e +
f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2661

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, (2*b)
/(a + b)])/(d*Sqrt[a + b]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rubi steps

\begin{align*} \int \sqrt{3+4 \cos (c+d x)} \sec (c+d x) \, dx &=3 \int \frac{\sec (c+d x)}{\sqrt{3+4 \cos (c+d x)}} \, dx+4 \int \frac{1}{\sqrt{3+4 \cos (c+d x)}} \, dx\\ &=\frac{8 F\left (\frac{1}{2} (c+d x)|\frac{8}{7}\right )}{\sqrt{7} d}+\frac{6 \Pi \left (2;\frac{1}{2} (c+d x)|\frac{8}{7}\right )}{\sqrt{7} d}\\ \end{align*}

Mathematica [A]  time = 0.0491347, size = 41, normalized size = 0.85 \[ \frac{8 F\left (\frac{1}{2} (c+d x)|\frac{8}{7}\right )+6 \Pi \left (2;\frac{1}{2} (c+d x)|\frac{8}{7}\right )}{\sqrt{7} d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[3 + 4*Cos[c + d*x]]*Sec[c + d*x],x]

[Out]

(8*EllipticF[(c + d*x)/2, 8/7] + 6*EllipticPi[2, (c + d*x)/2, 8/7])/(Sqrt[7]*d)

________________________________________________________________________________________

Maple [A]  time = 2.178, size = 158, normalized size = 3.3 \begin{align*} -2\,{\frac{\sqrt{ \left ( 8\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1 \right ) \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{-8\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+1} \left ( 4\,{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,2\,\sqrt{2} \right ) -3\,{\it EllipticPi} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,2,2\,\sqrt{2} \right ) \right ) }{\sqrt{-8\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+7\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sin \left ( 1/2\,dx+c/2 \right ) \sqrt{8\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}d}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)*(3+4*cos(d*x+c))^(1/2),x)

[Out]

-2*((8*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-8*cos(1/2*d*x+1/2*c)
^2+1)^(1/2)*(4*EllipticF(cos(1/2*d*x+1/2*c),2*2^(1/2))-3*EllipticPi(cos(1/2*d*x+1/2*c),2,2*2^(1/2)))/(-8*sin(1
/2*d*x+1/2*c)^4+7*sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(8*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{4 \, \cos \left (d x + c\right ) + 3} \sec \left (d x + c\right )\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(3+4*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(4*cos(d*x + c) + 3)*sec(d*x + c), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\sqrt{4 \, \cos \left (d x + c\right ) + 3} \sec \left (d x + c\right ), x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(3+4*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(4*cos(d*x + c) + 3)*sec(d*x + c), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{4 \cos{\left (c + d x \right )} + 3} \sec{\left (c + d x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(3+4*cos(d*x+c))**(1/2),x)

[Out]

Integral(sqrt(4*cos(c + d*x) + 3)*sec(c + d*x), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{4 \, \cos \left (d x + c\right ) + 3} \sec \left (d x + c\right )\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(3+4*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(4*cos(d*x + c) + 3)*sec(d*x + c), x)